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Application of Perturbation Theory to
Toroidal Ferrite Phase Shifters

Benjamin Lax and John Pehowich, Member, IEEE

Abstract —A new application of perturbation formalism is

developed to solve for the phase shift of inhomogeneously loaded
waveguides containing ferrite toroids with dielectric inserts. The
nonreciprocal differential phase shift is derived explicitly for

single and double toroidal phase shifters and agrees with experi-
ment over a broad band of frequencies. The formalism that can

take into account the coupling of higher order modes to the

fundamental mode by the geometrical inhomogeneities and ten-
sor properties of the ferrite is described. The theory can also be
used to evaluate the impedances over a broad bandwidth.

INTRODUCTION

T HE ORIGINAL invention of the single slab ferrite

phase shifter by Sakiotis and Chait [1] was subse-

quently replaced by the double slab phase shifter [2]. The

theory for both was fully developed by Lax, Button, and

Roth [2]. This was modified by Schloeman [3] and by Ince

and Stern [4] to include a dielectric slab between two

ferrite slabs. This idealized theory has been used for three

decades to approximate the more practical toroidal phase

shifter developed by Treuhaft and Silber [5] using empiri-

cal correction factors derived from experiments. The

closed form solution for the single and double toroidai

phase shifters is inappropriate for quantitative analysis.

Consequently we have developed a perturbation proce-

dure which treats the inhomogeneous geometries more

accurately. The theory provides more flexibility and yields

explicit expressions for the phase shift involving the di-

mensions and properties of the ferrite, and the dielectric.

It takes into account the demagnetizing and depolarizing

factors, as well as the dimensions of the waveguide. In

addition the perturbation treatment explores and eluci-

dates the physics of nonreciprocal differential phase shift,

the coupling of higher order modes and permits the

analysis and correction to the waveguide impedances over

a broad band of frequencies.

PERTURBATION PROCEDURE

The perturbation treatment starts with the expression

derived in Lax and Button “Microwave Ferrites and
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Ferrimagnetics” [6]:

where ~ and PO are the perturbed and unperturbed

phase shift, x. and x~ are the dielectric and magnetic

susceptibilities of the material inserted in the waveguide,

AS and S are the areas of the inserted materials and the

whole guide resp~ctively: The above in (1) is exact if the

perturbed field E and h are corr~ctly rep~esented; nor-

mally they are approximated by EO and ho, the unper-

turbed quantities. However in this case for inhomoge-

neous geometries such as a toroid, we replace the bulk

susceptibilities by effective quantities which include depo-

larizing and demagnetizing factors involving the dimen-

sion and shape of the dielectric and ferrite components.

To illustrate the procedure we shall start with the

twin-slab ferrite separated by a dielectric slab as shown in

Fig. 1. This configuration has an exact solution which

results in a transcendental equation using the procedure

developed in [2]:

j~kq
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This equation is quite involved and contains a number

of parameters such as the transverse wave numbers ka,

km and km related to the air, ferrite, and dielectric
regions respectively, given by the dispersion relations:

k: +P2 = tO2qLo. (3)

Here, cm, ~ and Co are the permitivities of the ferrite,

dielectric and free space, respectively, The terms 0 and p
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bilities. First we solve two simple simultaneous equations:

kmOtan kmO(u +.8) = kaOcoth k.Oa

k:o+k:o=:(e’ff–l) , (16)

for kaO, k~O using Eeff with kaO, kmO representing the

unperturbed transverse wave numbers. To evaluate (5)

and (6) an iterative procedure is employed. This is a

standard problem which is easily solved graphically or on

a computer. From this we obtain ~~ = oJ2\c2 + k~o. This

is the value which we use when we evaluate the magnetic

perturbation. We are primarily interested in the differen-

tial phase shift between the two directions of propagation

or the equivalent reversal of the magnetization. We ob-
Fig. L Twin slab nonreciprocal phase shifter with dielectric arrow

tainindicates direction of magnetization.

A~ = 2,yXY

“[
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sin2kmo(cr + 8)

(
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(a+a)+ Zk +
kao sinh2knOaUo 2k.o – a

are defined by

1+ xxx 1 + xx.
13=— (4)

Xxy ; ‘= (1+X.X)2+(X.,)2

where XXX and ,yXY are diagonal and off diagonal suscep-

tibilities of the ferrite as defined in [5].

In order to solve for ~ the propagation constant, it is

necessav to satisfy the full set of (2) and (3). Computer

codes have been developed to do this and Ince and Stern

[61 have used them to study some of the,properties of this
configuration by varying the ferrite and dielectric parame-

ters.

The perturbation method is a much simpler technique

to apply. First we start by assuming that the ferrite is

unmagnetized and treat it as a dielectric. This then uses

only the first term in the numerator of (l). We then

assume that the dielectric and the ferrite slab represent a

monolithic single dielectric with an average dielectric

constant. This can be evaluated by setting 13– PO = O and

E = E. using the solution for the TEIO dielectric mode

(or LSEIO) as indicated by Tsandoulas, Temme, and
Willworth [7]. When this is evaluated we find

( 2kGou +sin2kGOu
~eff =

Em + Ae
2kOO(u + i5) +sin2kaOm )

(5)

where Ae = E – ●m.

Now we have a simple dielectrically loaded rectangular

waveguide which we can treat in terms of a set of or-

thonormal LSE and LSM modes. For the lowest TE

mode, the TEIO, we now turn on the magnetic field and

consider the perturbation in terms of the tensor suscepti-

This is an explicit expression which is more easily

solved in terms of the pertinent parameters as a function

of frequency than the transcendental equation of tlhe
exact solution. When the two solutions are compared over

a broad bandwidth as ‘shown in Fig. 2 the perturbation

solution is very close to the closed form results.

TOROIDAL PHASE SHIFTERS

The procedure for the toroidal phase shifter is very

similar to that described for the idealized 3-slab geomet-

ry. The principal difference is that the configuration is

highly inhomogeneous and hence the dielectric and magn-

etic components each have to be treated in terms of

effective susceptibilities which take into account the shalpe

and dimensions. The single toroid shown in Fig. 3. has a

rectangular insert inside the toroidal tube. We still con-

sider the composite as a single effective unrnagnetizcd

dielectric but this time we make a correction for tlhe
electric field inside the dielectric in terms of the depolar-

izing factors due to the dipole charges at the interface

with the ferrite. For the TEIO mode this then simplifies

the expression in (5) to yield

AE h –28 2kmo~ +sin2koa
c ‘ff = ●m +

h 2ko(a + 8) +sin2kom
(8)

l+N~
cm

where N is the depolarizing factor which depends on the

relative dimensions of the rectangular cross section. The

other new factor is obtained from the waveguide height h

and the thickness of the ferrite tube ~. From this point we

then proceed as before solving the two relations shown in

(6) for kmo and kao again using an iterative procedure.

Next we treat the ferrite as a window picture frame in

which there are vertical and horizontal sections which are

magnetized in opposite directions. For the TE lo mode,
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Fig. 2. Comparison of exact and perturbation solution for twin ferrite slab phase shifter with dielectric slab.
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Fig. 3. Toroidal ferrite tube with dielectric insert in rectangular wave-
guide. Magnetization indicated by arrows.

the top and bottom of the picture frame, which are

magnetized horizontally can be shown not to contribute

to the differential phase shift since they cancel one an-

other. Hefice only the vertical portions are evaluated.

This yields the following expression for the differential

phase shift:

r
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X-----X Experiment

79.9 ---- 3 Slab Theory

68.51 I I , I , , 1 I J
6 8 10 12 14 16 16

Frequency (GHz)

Fig. 4. Comparison of theo~ and experiment for single toroidal phase

shifter. The upper curve is exact solution for idealized twin slab plus
dielectric. Lower curve is perturbation treatment of toroid and middle

curve is experiment.

The double toroid shown in Fig. 5 is separated by a

dielectric slab and has two toroidal tubes with rectangular

hollow cores. For the sake of generality we shall assume it

contains a dielectric. In this instance we first evaluate the

effective dielectric constant of the ferrite toroids. This

1

h–26
AP = 2&7

I

cos2kaOa –cos2kmo(a + 6) +sin2kmo(u + 8)

sin2kro(~ + 6) kro sin2kmo(u + S) sinh2k~oa “

( )1

(9)

(CT+i$)+
2kmo

+
k~O sinh2k~oa 2kn0 – a

Where x$ = w~ /w for a saturated ferrite with a zero

internal field.

This expression has been used to evaluate the differen-

tial phase shift for a single toroid and is compared with

experiment and the results of the exact theory using (2)

‘ for an equivalent” idealized double ferrite slab. This is

shown in Fig. 4, which illustrates the superiority of the

perturbation treatment which agrees much more closely

with experiment.

yields an effective dielectric value:

Ac h–28
E‘ff = em +

l+N~
h

cm

.[

sin2k~8 +sin2kn(a – 8)
a–28+

2k~ 1
a sin2k~a

. (lo)

~– k.
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ka4
Fig. 5. Double toroidal ferrite phase shifter. Magnetization indicated

by arrows.
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Fig. 6. Broadband toroidal phase shifters. Upper curve’ is a single
toroid, and lower curves are two double toroids, one for low band, the
other for high band. Solid curves are theoW, the crosses are experimen-
tal.

From here on we merely repeat the procedure by

solving for the propagation constant, ~, using the simple

transcendental equation for a dielectrically loaded wave-

guide represented by (6) solving for and using the relation

m’
k:. + k:. = -# – e’ff) (11)

where k~o replaces kao in this case. For the case of a

hole in the ferrite tube Ae = 1 – Em is negative and hence
● eff << ~ wowing p we are nOw in a position to turn on

the magnetic field and evaluate the differential phase

shift for this configuration. The result is evaluated for a

displaced window frame geometry which yields similar but

somewhat more complicated results. For the sake of

brevity we shall not reproduce the expression, which will

appear in a future publication dedicated to the quantita-

tive study of double toroidal devices.

The differential phase shift as obtained theoretically is

compared with experiment for two such phase shifters
and is shown in Fig. 6. The agreement is within a few

percent and shows the flat frequency response character-

istics of the double toroid phase shifter. The figure also

shows another single toroidal phase shifter over a broad

band and’ again the perturbation result is in excellent

agreement with experiment.

HIGHER ORDER MODES

The perturbation treatment can be carried to higher

order to account for the excitation ~f higher order modes

when the phase shifter is operated over a broad band of

frequencies. The experiments exhibit the presence of these

modes as resonances in the presence of the dominant

TEIO or LSEIO mode. The higher order modes can be

coupled to the fundamental mode b$ the ferrite tensor

properties or dielectric inhomogeneities. This can be

demonstrated quite readily as follows. Let us assume that

the total field” in the waveguide is a linear combination of

the LSEIO, LSEII, LSMII modes labeled with subscripts

A, B, and C, respectively, where xl, B, C are the coeffic-

ients of the linear expansion: ~~

Equation (13) is obtained by substituting E~o~AL and

LTOTAL ‘n+(l) and ‘$Placing ~., ‘0 a~d ‘. by B,4~ ‘A atld
h~, p~, E~, ~nd ~~, pc, Ec and hc successively, and
E = EToT~~, h = hToTU. With orthqnormal modes vve

obtain the three linear equations since the denominator

of (1) can be set equal to unity but is “multiplied by the

coefficients A, B, and C.

A( ~ – ~~) = AM~A + BM~D + CM~c

B(P – fl~) = AM~A + BM~~ + CM~c
\

C(B – &) = AMCA i- BMC~ + CMCC. (1:3)

When we set the determinant of the coefficients A, .B,

and C equal to zero we obtain the secular equation for ~,

the determinant then yields a .cubi~, ,equation in /3 corre-

sponding to the three values of the propagation constant

at a particular frequency. When this value of ~ is inserted

in any two equations above one can obtain the relative

values of the amplitudes of the two higher order modes to

the dominant mode. Thus for example values of B/’A
and C\A yields the magnitude of the coupling to mode A

which may be the principal mode. launched by the wave-

guide interfaced with the ferrite phase shifter. If (3L =
~~ + M~A, where M_A~ is the first order perturbation

correction for mode A, then the expansion of the secular

equation can be expressed to second order when higher

order products of the matrix elements are neglected to

yield an expression

This result can be generalized to an expansion which
includes all higher order modes then the above equation

then becomes .

where” Mij are the coupling matrix elements, expressed
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for our situation in terms of the diagonal and off diagonal

susceptibilities and the orthonormal functions repre-

senting all others of the LSM,.,,, LSE~. modes of our

dielectrically loaded waveguide characterized by an eeff

evaluated for the fundamental modes. Then the matrix

elements are the diagonal and off diagonal elements:

‘cL = j X$$HiaHi@ ‘s
AS

~i~ = ~ XZFH,.H,D ds i + .i
AS

a,p=x, y (16)

using the orthonormal relation

p“(wds=~J
(17)

Here X$ are both the diagonal and off diagonal suscepti-

bilities expressed in terms of demagnetizing factors for

each mode as determined by geometrical factors derived

and enumerated in [5]. The above procedure gives a good

approximation of the coupling of the modes and their

contributions to the change in the propagation constant

due to the ferrite components.

The information thus obtained can also be used to

calculate the impedance and its variation with frequency

and magnetic properties of the ferrite. For example ex-

pressions for the impedance of the TE and TM modes

have been derived in two ways. One is the point or

intrinsic impedance at the center of the waveguide which

is the ratio of transverse fields of EY /HX for the TE

mode and TM modes E, /HY:

ZTE=; , zTM=~ (18)
me

The alternative way is to utilize the relation between

the Poynting vector, the current or voltage, the latter in

terms of line integrals which yields results effectively

equivalent to the above in (18) except for numerical

factors and ratios of the rectangular guide dimensions.

This leads to the characteristic impedance for the dielec-

trically loaded guide. The impedance expression for the

Poynting vector method is slightly more involved but still

proportional to p-l or ~ for TE and TM, modes respec-

tively:

—-7 ~ (for completely filled guide). (19)

Where h and L are the dimensions of the waveguide.

Similar expressions can be derived for the TM modes.

The significant result is that except for numerical and

geometrical factors, if one knows beta, the impedance

variation with frequency is essentially determined. In the

spirit of the perturbation treatment, if the correction due

to the magnetic components is relatively small, these can

be incorporated into and used in the equations for the

impedances. From (19) we then obtain the dispersion of

the characteristic impedance.

CONCLUSION

The perturbation treatment reduces the problem of

toroidal ferrite phase shifters to that of an equivalent

monolithic dielectrically loaded waveguide. This then

forms the basis for the well known LSE~~, LSM~~ modes

represented by an orthonormal set of functions. The

deviations from the now established fictitious dielectric

waveguide structure consists primarily of the magnetic

perturbations, although for higher order modes smaller

dielectric perturbations can also be evaluated. In princi-

ple then we can calculate the change in the propagation

constant using demagnetizing factors to evaluate effective

susceptibilities and express the explicit integrals in terms

of the unperturbed wave functions for the electromag-

netic fields. The results then yield which can incorporate

all perturbations, including diagonal and off diagonal

components as well as dielectric corrections. In this paper

we have illustrated the explicit results only for the non-

reciprocal differential phase shift for single and double

toroidal phase shifters and found excellent correlation

between experiments and theory over a broad band of

frequencies.

As a corollary to the extension of the perturbation

treatment we have outlined the procedure for including

higher order modes. This not only incorporates the per-

turbation for each mode but also the off-diagonal compo-

nents in the secular matrix which couples the modes. This

can be expanded to second order to include all higher

order modes, when cubic and higher products of matrices

are neglected. In practice we retain only a few of these

terms since only a few of these higher order modes can

exist within a practical range of frequencies and the

others are cutoff. Hence their contribution can be ignored

or neglected as too small within the approximation in-

tended. With the evaluation of the propagation constant

for each mode one can also calculate the impedance of

the various modes classi~ing them as TE or TM like

which vary as B-l or (? with the appropriate geometrical

corrections associated with the LSE and LSM modes as
indicated by the definition of impedmme in terms of the

poynting vector and the power relations.
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